Automatic Sleep Stage Scoring with Single-Channel EEG Using Convolutional Neural Networks
نویسندگان
چکیده
We used convolutional neural networks (CNNs) for automatic sleep stage scoring based on single-channel electroencephalography (EEG) to learn task-specific filters for classification without using prior domain knowledge. We used an openly available dataset from 20 healthy young adults for evaluation and applied 20-fold crossvalidation. We used class-balanced random sampling within the stochastic gradient descent (SGD) optimization of the CNN to avoid skewed performance in favor of the most represented sleep stages. We achieved high mean F1-score (81%, range 79–83%), mean accuracy across individual sleep stages (82%, range 80–84%) and overall accuracy (74%, range 71–76%) over all subjects. By analyzing and visualizing the filters that our CNN learns, we found that rules learned by the filters correspond to sleep scoring criteria in the American Academy of Sleep Medicine (AASM) manual that human experts follow. Our method’s performance is balanced across classes and our results are comparable to state-of-the-art methods with hand-engineered features. We show that, without using prior domain knowledge, a CNN can automatically learn to distinguish among different normal sleep stages.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملA Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring
In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order...
متن کاملA new approach for automatic sleep scoring: Combining Taguchi based complex-valued neural network and complex wavelet transform
Automatic classification of sleep stages is one of the most important methods used for diagnostic procedures in psychiatry and neurology. This method, which has been developed by sleep specialists, is a time-consuming and difficult process. Generally, electroencephalogram (EEG) signals are used in sleep scoring. In this study, a new complex classifier-based approach is presented for automatic s...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملAutomatic analysis of single-channel sleep EEG: validation in healthy individuals.
STUDY OBJECTIVE To assess the performance of automatic sleep scoring software (ASEEGA) based on a single EEG channel comparatively with manual scoring (2 experts) of conventional full polysomnograms. DESIGN Polysomnograms from 15 healthy individuals were scored by 2 independent experts using conventional R&K rules. The results were compared to those of ASEEGA scoring on an epoch-by-epoch basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.01683 شماره
صفحات -
تاریخ انتشار 2016